43 research outputs found

    Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle

    Get PDF
    Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease-causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve-muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high-resolution videos and step-by-step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild-type ETA fibre-type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour

    Expanding the Toolkit for In Vivo Imaging of Axonal Transport

    Get PDF
    Axonal transport maintains neuronal homeostasis by enabling the bidirectional trafficking of diverse organelles and cargoes. Disruptions in axonal transport have devastating consequences for individual neurons and their networks, and contribute to a plethora of neurological disorders. As many of these conditions involve both cell autonomous and non-autonomous mechanisms, and often display a spectrum of pathology across neuronal subtypes, methods to accurately identify and analyze neuronal subsets are imperative. This paper details protocols to assess in vivo axonal transport of signaling endosomes and mitochondria in sciatic nerves of anesthetized mice. Stepwise instructions are provided to 1) distinguish motor from sensory neurons in vivo, in situ, and ex vivo by using mice that selectively express fluorescent proteins within cholinergic motor neurons; and 2) separately or concurrently assess in vivo axonal transport of signaling endosomes and mitochondria. These complementary intravital approaches facilitate the simultaneous imaging of different cargoes in distinct peripheral nerve axons to quantitatively monitor axonal transport in health and disease

    PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors

    Get PDF
    Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including formation of signalling-competent ligand-receptor complexes, their endocytosis and trafficking. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF) -activated TrkB and p75NTR in motor neurons. Here, using a proteomic approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1 knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors

    The evolution of the axonal transport toolkit

    Get PDF
    Neurons are highly polarized cells that critically depend on long‐range, bidirectional transport between the cell body and synapse for their function. This continual and highly coordinated trafficking process, which takes place via the axon, has fascinated researchers since the early 20th century. Ramon y Cajal first proposed the existence of axonal trafficking of biological material after observing that dissociation of the axon from the cell body led to neuronal degeneration. Since these first indirect observations, the field has come a long way in its understanding of this fundamental process. However, these advances in our knowledge have been aided by breakthroughs in other scientific disciplines, as well as the parallel development of novel tools, techniques and model systems. In this review, we summarize the evolution of tools used to study axonal transport and discuss how their deployment has refined our understanding of this process. We also highlight innovative tools currently being developed and how their addition to the available axonal transport toolkit might help to address key outstanding questions
    corecore